

Sixteenth International Symposium on Theoretical Electrical Engineering ISTET'11

> July 25-27, 2011 Klagenfurt, Austria

Fully Time-Domain Simulation of Multiconductor Transmission Line Systems

Lubomír Brančík, Břetislav Ševčík

Brno University of Technology

Faculty of Electrical Engineering and Communication CZECH REPUBLIC

Presentation schedule

- Introduction
- Implicit Wendroff formula
- MTL boundary conditions incorporation
 - Simply terminated MTL (Thévenin equivalents)
 - MTL within a lumped circuit (MNA formulation)
 - General MTL systems (MNA, Euler method)
- Experimental error analysis
- Examples of MTL simulation
- □ CPU time evaluation
- Conclusion

Introduction

MTL telegraphic equations

$$-\frac{\partial \mathbf{v}(t,x)}{\partial x} = \mathbf{R}_0(x)\mathbf{i}(t,x) + \mathbf{L}_0(x)\frac{\partial \mathbf{i}(t,x)}{\partial t}, \quad -\frac{\partial \mathbf{i}(t,x)}{\partial x} = \mathbf{G}_0(x)\mathbf{v}(t,x) + \mathbf{C}_0(x)\frac{\partial \mathbf{v}(t,x)}{\partial t}$$

 $\mathbf{R}_0(x)$, $\mathbf{L}_0(x)$, $\mathbf{G}_0(x)$, $\mathbf{C}_0(x)$ – nonuniform MTL's $n \times n$ per-unit-length matrices $\mathbf{v}(t,x)$, $\mathbf{i}(t,x) - n \times 1$ column vectors of voltages and currents of n active wires**28-Jul-11**brancik@feec.vutbr.czpage 3

Implicit Wendroff formula

Voltage and current vectors and their derivatives are replaced by

$$\frac{\partial \mathbf{u}(t,x)}{\partial t}\Big|_{j,k} \doteq \frac{1}{2} \left(\frac{\mathbf{u}_{k}^{j} - \mathbf{u}_{k}^{j-1}}{\Delta t} + \frac{\mathbf{u}_{k+1}^{j} - \mathbf{u}_{k+1}^{j-1}}{\Delta t} \right), \quad \frac{\partial \mathbf{u}(t,x)}{\partial x}\Big|_{j,k} \doteq \frac{1}{2} \left(\frac{\mathbf{u}_{k+1}^{j} - \mathbf{u}_{k}^{j}}{\Delta x} + \frac{\mathbf{u}_{k+1}^{j-1} - \mathbf{u}_{k}^{j-1}}{\Delta x} \right)$$
$$\mathbf{u}(t,x)\Big|_{j,k} \doteq \left(\mathbf{u}_{k+1}^{j} + \mathbf{u}_{k}^{j} + \mathbf{u}_{k+1}^{j-1} + \mathbf{u}_{k}^{j} \right) / 4$$

• Equations expressed for (k+1)-th section and *j*-th time instance

$$\mathbf{v}_{k}^{j} - \mathbf{v}_{k+1}^{j} + \mathbf{A}_{vk}\mathbf{i}_{k}^{j} + \mathbf{A}_{vk}\mathbf{i}_{k+1}^{j} = -\mathbf{v}_{k}^{j-1} + \mathbf{v}_{k+1}^{j-1} + \mathbf{B}_{vk}\mathbf{i}_{k}^{j-1} + \mathbf{B}_{vk}\mathbf{i}_{k+1}^{j-1}$$
$$\mathbf{i}_{k}^{j} - \mathbf{i}_{k+1}^{j} + \mathbf{A}_{ik}\mathbf{v}_{k}^{j} + \mathbf{A}_{ik}\mathbf{v}_{k+1}^{j} = -\mathbf{i}_{k}^{j-1} + \mathbf{i}_{k+1}^{j-1} + \mathbf{B}_{ik}\mathbf{v}_{k}^{j-1} + \mathbf{B}_{ik}\mathbf{v}_{k+1}^{j-1}$$

with

$$\mathbf{A}_{vk} = -(\mathbf{R}_{0k}/2 + \mathbf{L}_{0k}/\Delta t)\Delta x \quad , \quad \mathbf{B}_{vk} = (\mathbf{R}_{0k}/2 - \mathbf{L}_{0k}/\Delta t)\Delta x$$
$$\mathbf{A}_{ik} = -(\mathbf{G}_{0k}/2 + \mathbf{C}_{0k}/\Delta t)\Delta x \quad , \quad \mathbf{B}_{ik} = (\mathbf{G}_{0k}/2 - \mathbf{C}_{0k}/\Delta t)\Delta x$$

where $\mathbf{R}_{0k} = \mathbf{R}_0(\xi_k)$, $\mathbf{L}_{0k} = \mathbf{L}_0(\xi_k)$, $\mathbf{G}_{0k} = \mathbf{G}_0(\xi_k)$, $\mathbf{C}_{0k} = \mathbf{C}_0(\xi_k)$, with $\xi_k \in (x_k, x_k+1)$

Simply terminated MTL

 $\mathbf{x}^{j} = \begin{bmatrix} \mathbf{v}^{jT}, \mathbf{i}^{jT} \end{bmatrix}^{\mathrm{T}} \quad \text{with} \quad \mathbf{v}^{j} = \begin{bmatrix} \mathbf{v}_{1}^{jT}, \mathbf{v}_{2}^{jT}, \dots, \mathbf{v}_{K+1}^{jT} \end{bmatrix}^{\mathrm{T}} , \ \mathbf{i}^{j} = \begin{bmatrix} \mathbf{i}_{1}^{jT}, \mathbf{i}_{2}^{jT}, \dots, \mathbf{i}_{K+1}^{jT} \end{bmatrix}^{\mathrm{T}}$

• Equation internal structure (MTL divided on K = 3 sections)

ΓΙ	-I	0	0	\mathbf{A}_{v1}	\mathbf{A}_{v1}	0	0	$\left \left[\mathbf{v}_{1} \right]^{j} \right $	−I	Ι	0	0	\mathbf{B}_{v1}	\mathbf{B}_{v1}	0	0	$\left[\begin{bmatrix} \mathbf{v}_1 \end{bmatrix} \right]$	^{j-1}	0	ľ
0	Ι	-I	0	0	\mathbf{A}_{v2}	\mathbf{A}_{v2}	0	v ₂	0	-I	Ι	0	0	\mathbf{B}_{v2}	\mathbf{B}_{v2}	0	v ₂		0	
0	0	Ι	-I	0	0	\mathbf{A}_{v3}	\mathbf{A}_{v3}	v ₃	0	0	-I	Ι	0	0	\mathbf{B}_{v3}	\mathbf{B}_{v3}	v ₃		0	
\mathbf{A}_{i1}	\mathbf{A}_{i1}	0	0	Ι	-I	0	0	$ \mathbf{v}_4 $	\mathbf{B}_{i1}	B _{i1}	0	0	-I	Ι	0	0	v ₄		0	
0	\mathbf{A}_{i2}	\mathbf{A}_{i2}	0	0	Ι	-I	0	$\left \left \frac{\mathbf{i}}{\mathbf{i}_1} \right \right $	= 0	\mathbf{B}_{i2}	\mathbf{B}_{i2}	0	0	-I	Ι	0	$ \overline{\mathbf{i}}_1 $	+	0	
0	0	\mathbf{A}_{i3}	\mathbf{A}_{i3}	0	0	I	-I	i ₂	0	0	\mathbf{B}_{i3}	B _{i3}	0	0	-I	Ι	i ₂		0	
Ι	0	0	0	R _{iL}	0	0	0	i ₃	0	0	0	0	0	0	0	0	i ₃		v _{iL}	
0	0	0	Ι	0	0	0	- R _{iR}	\mathbf{i}_4	0	0	0	0	0	0	0	0	$\begin{bmatrix} \mathbf{i}_4 \end{bmatrix}$		V _{iR}	

Boundary conditions via generalized Thévenin equivalents

28-Jul-11

28-Jul-11

••••

brancik@feec.vutbr.cz

page 6

Matrix recursive formulation
$$\mathbf{A}\mathbf{x}^{j} = \mathbf{B}\mathbf{x}^{j-1} + \mathbf{D}^{j}$$

 $\mathbf{x}^{j} = \begin{bmatrix} \mathbf{v}^{j\mathrm{T}}, \mathbf{i}^{j\mathrm{T}}, \mathbf{v}_{\mathrm{N}}^{j\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$ with $\mathbf{v}^{j} = \begin{bmatrix} \mathbf{v}_{1}^{j\mathrm{T}}, \mathbf{v}_{2}^{j\mathrm{T}}, \dots, \mathbf{v}_{K+1}^{j\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$ Wendroff method
 $\mathbf{H} = \mathbf{G} + \frac{\mathbf{C}}{\Delta t}$
 $\mathbf{F} = \frac{\mathbf{C}}{\Delta t}$
 $\mathbf{S}_{\mathrm{L}}\mathbf{i}_{\mathrm{L}}^{j} + \mathbf{S}_{\mathrm{R}}\mathbf{i}_{\mathrm{R}}^{j} + \mathbf{H}\mathbf{v}_{\mathrm{N}}^{j} = \mathbf{F}\mathbf{v}_{\mathrm{N}}^{j-1} + \mathbf{i}_{\mathrm{N}}^{j}$
 $\mathbf{v}_{\mathrm{L}}^{j} - \mathbf{S}_{\mathrm{L}}^{\mathrm{T}}\mathbf{v}_{\mathrm{N}}^{j} = \mathbf{0}$
 $\mathbf{v}_{\mathrm{R}}^{j} - \mathbf{S}_{\mathrm{R}}^{\mathrm{T}}\mathbf{v}_{\mathrm{N}}^{j} = \mathbf{0}$

 $\mathbf{v}_{\mathrm{L}}(t) = \mathbf{S}_{\mathrm{L}}^{\mathrm{T}} \mathbf{v}_{\mathrm{N}}(t), \ \mathbf{v}_{\mathrm{R}}(t) = \mathbf{S}_{\mathrm{R}}^{\mathrm{T}} \mathbf{v}_{\mathrm{N}}(t)$

MTL boundary conditions **

Modified nodal analysis description

MTL within a lumped circuit (1)

 $\mathbf{C}\frac{d\mathbf{v}_{\mathrm{N}}(t)}{dt} + \mathbf{G}\mathbf{v}_{\mathrm{N}}(t) + \mathbf{S}_{\mathrm{L}}\mathbf{i}_{\mathrm{L}}(t) + \mathbf{S}_{\mathrm{R}}\mathbf{i}_{\mathrm{R}}(t) = \mathbf{i}_{\mathrm{N}}(t)$

MTL within a lumped circuit (2)

$$\mathbf{B}\mathbf{x}^{j-1} + \mathbf{D}^{j} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{I}_{\pm} & \mathbf{A}_{v} & \mathbf{0} \\ \mathbf{A}_{i} & \mathbf{I}_{\pm} & \mathbf{0} \\ \mathbf{I}_{2} & \mathbf{0} & \mathbf{S}_{c} \\ \mathbf{0} & \mathbf{S}_{r} & \mathbf{H} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{I}_{\mp} & \mathbf{B}_{v} & \mathbf{0} \\ \mathbf{B}_{i} & \mathbf{I}_{\mp} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{F} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} \mathbf{0} \\ \mathbf{i}_{N} \end{bmatrix}$$

• Equation internal structure (MTL divided on K = 3 sections)

ΓI	-I	0	0	\mathbf{A}_{v1}	\mathbf{A}_{v1}	0	0	0	$\left[\mathbf{V}_{\mathrm{L}} \right]$	l ^j	Ⅰ -I	Ι	0	0	\mathbf{B}_{v1}	\mathbf{B}_{v1}	0	0	0	$\begin{bmatrix} \mathbf{v}_{\mathrm{L}} \end{bmatrix}$	<i>j</i> –1	0]
0	Ι	-I	0	0	\mathbf{A}_{v2}	\mathbf{A}_{v2}	0	0	v ₂		0	-I	Ι	0	0	\mathbf{B}_{v2}	\mathbf{B}_{v2}	0	0	v ₂		0	
0	0	Ι	-I	0	0	\mathbf{A}_{v3}	\mathbf{A}_{v3}	0	v ₃		0	0	-I	Ι	0	0	\mathbf{B}_{v3}	\mathbf{B}_{v3}	0	v ₃		0	
\mathbf{A}_{i1}	\mathbf{A}_{i1}	0	0	Ι	-I	0	0	0	v _R		\mathbf{B}_{i1}	B _{i1}	0	0	-I	Ι	0	0	0	v _R		0	ł
0	\mathbf{A}_{i2}	\mathbf{A}_{i2}	0	0	Ι	-I	0	0	• i _L	=	0	\mathbf{B}_{i2}	\mathbf{B}_{i2}	0	0	-I	Ι	0	0	• i _L	+	0	
0	0	\mathbf{A}_{i3}	\mathbf{A}_{i3}	0	0	Ι	-I	0	i ₂		0	0	\mathbf{B}_{i3}	\mathbf{B}_{i3}	0	0	-I	Ι	0	i ₂		0	
Ι	0	0	0	0	0	0	0	$-\mathbf{S}_{\mathrm{L}}^{\mathrm{T}}$	i ₃		0	0	0	0	0	0	0	0	0	i ₃		0	
0	0	0	Ι	0	0	0	0	$-\mathbf{S}_{\mathbf{R}}^{\mathrm{T}}$	- i _R		0	0	0	0	0	0	0	0	0	- i _R		0	
0	0	0	0	\mathbf{S}_{L}	0	0	- S _R	Η	V _N		0	0	0	0	0	0	0	0	F	v _N		i _N	

Boundary conditions via MNA and implicit Euler methods

28-Jul-11

 $Ax^{j} =$

Sensitivity determination

Sensitivity with respect to a parameter γ (*j* = 1,2,...)

	Parameter	$\partial \mathbf{A} / \partial \gamma$	$\partial {f B} / \partial \gamma$	$\partial \mathbf{x}^{j}$	$\partial \mathbf{x}^{j}$	$^{-1}$ $\partial \mathbf{A}$.	$\partial \mathbf{B}$.	$\partial \mathbf{D}^{j}$
Distributed	$\begin{array}{l} \gamma \in \\ \{\mathbf{L}_0(x), \mathbf{R}_0(x)\} \end{array}$	$\begin{bmatrix} 0 & \partial \mathbf{A}_{v} / \partial \gamma & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{bmatrix} 0 & \partial \mathbf{B}_{v} / \partial \gamma & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\frac{\partial A}{\partial \gamma} = \mathbf{A}$ with x	$\mathbf{A}^{-1} \left(\mathbf{B} \frac{\partial \mathbf{A}^{j}}{\partial \gamma} \right)$ $\mathbf{A}^{j} = \mathbf{A}^{-1} \left(\mathbf{I} \right)$	$\frac{\partial f}{\partial \gamma} \mathbf{x}^{j}$ $\mathbf{B} \mathbf{x}^{j-1} + \mathbf{D}^{j}$	$+\frac{\partial \mathcal{L}}{\partial \gamma}\mathbf{x}^{j-1}$	$+\frac{\partial 2}{\partial \gamma}$
	$\begin{array}{l} \gamma \in \\ \{ \mathbf{C}_0(x), \mathbf{G}_0(x) \} \end{array}$	$\begin{bmatrix} 0 & 0 & 0 \\ \partial \mathbf{A}_{i} / \partial \gamma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \\ \partial \mathbf{B}_i / \partial \gamma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\mathbf{A} = \begin{bmatrix} \mathbf{I} \\ \mathbf{A} \\ \mathbf{I} \end{bmatrix}$	$\begin{array}{ccc} \mathbf{A}_{\mathrm{v}} & 0^{T} \\ \mathbf{A}_{\mathrm{i}} & \mathbf{I}_{\pm} & 0 \\ 0 & \mathbf{S} \end{array}$	$\mathbf{D} = \begin{bmatrix} 0 \\ \mathbf{i} \end{bmatrix}$		
	$\gamma \equiv l$	$\begin{bmatrix} 0 & \mathbf{A}_{\mathbf{v}}/l & 0 \\ \mathbf{A}_{\mathbf{i}}/l & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & \mathbf{B}_{\mathrm{v}}/l & 0 \\ \mathbf{B}_{\mathrm{i}}/l & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	Param.	$\frac{\partial \mathbf{A}_{vk}}{\partial \gamma}$	$\partial \mathbf{B}_{vk}/\partial \gamma$	$\begin{bmatrix} 0 & \mathbf{F} \end{bmatrix}$ $\frac{\partial \mathbf{A}_{ik}}{\partial \gamma}$	$\left\lfloor \mathbf{R}_{N} \right\rfloor$ $\partial \mathbf{B}_{ik} / \partial \gamma$
Lumped		$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_1$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_1$	$\gamma \in \mathbf{L}_{0k}$	$-\frac{\partial \mathbf{L}_{0k}}{\partial \gamma} \frac{\Delta x}{\Delta t}$	$-\frac{\partial \mathbf{L}_{0k}}{\partial \gamma} \frac{\Delta x}{\Delta t}$	0	0
	$\gamma \in \mathbf{C}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \partial \mathbf{C} / \partial \gamma \end{bmatrix} \overline{\Delta t}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \partial \mathbf{C} / \partial \gamma \end{bmatrix} \overline{\Delta t}$	$\gamma \in \mathbf{R}_{0k}$	$-\frac{\partial \mathbf{R}_{0k}}{\partial \gamma}\frac{\Delta x}{2}$	$\frac{\partial \mathbf{R}_{0k}}{\partial \gamma} \frac{\Delta x}{2}$	0	0
				$\gamma \in \mathbf{C}_{0k}$	0	0	$-\frac{\partial \mathbf{C}_{0k}}{\partial \gamma}\frac{\Delta x}{\Delta t}$	$-\frac{\partial \mathbf{C}_{0k}}{\partial \gamma}\frac{\Delta x}{\Delta t}$
	γ∈ G	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \partial \mathbf{G} / \partial \gamma \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\gamma \in \mathbf{G}_{0k}$	0	0	$-\frac{\partial \mathbf{G}_{0k}}{\partial \gamma} \frac{\Delta x}{2}$	$\frac{\partial \mathbf{G}_{0k}}{\partial \gamma} \frac{\Delta x}{2}$

28-Jul-11

General MTL systems (1)

28-Jul-11

brancik@feec.vutbr.cz

General MTL systems (2)

***** Matrix recursive formulation $Ax^{j} = Bx^{j-1} + D^{j}$

28-Jul-11

brancik@feec.vutbr.cz

Experimental error analysis

28-Jul-11

Examples: Thévenin equivalents

Uniform/Nonuniform MTLs: responses to external driving

28-Jul-11

Examples: Thévenin equivalents

- Uniform/Nonuniform MTLs:
- nonzero initial condition

$$v_1(x,0) = \sin^2(\pi(4x/l - 3/2))$$
, if $3l/8 < x < 5l/8$
 $v_1(x,0) = 0$, otherwise

external driving & nonlinear MTL

$$v_{iL1}(t) = \sin^2(\pi t/2 \cdot 10^{-9})$$
, if $0 \le t \le 2 \cdot 10^{-9}$
 $v_{iL1}(t) = 0$, otherwise

* Nonuniform MTL, reactive terminations

$$\mathbf{C}\frac{d\mathbf{v}_{\mathrm{N}}(t)}{dt} + \mathbf{G}\mathbf{v}_{\mathrm{N}}(t) + \mathbf{S}_{\mathrm{L}}\mathbf{i}_{\mathrm{L}}(t) + \mathbf{S}_{\mathrm{R}}\mathbf{i}_{\mathrm{R}}(t) = \mathbf{i}_{\mathrm{N}}(t)$$

28-Jul-11

brancik@feec.vutbr.cz

Example: MNA + Euler method (2)

Voltage and current distributions

Nodal voltage waveforms

Example: MNA + Euler method (3)

Voltage distributions sensitivities *

Voltage sensitivity w.r. to length on 2nd conductor Voltage sensitivity w.r. to G_{12} on 2^{nd} conductor 0.1 0.02 Sensitivity S_{length} Sensitivity S_{G12} 0.05 0.01 0 0 -0.05 -0.1 0.4 -0.01 6 0.2 0.2 x 10 2 2 x 10 0 0 0 0 Distance (m) Time (s) Distance (m) Time (s) Voltage sensitivity w.r. to ${\rm C}^{}_{\rm L2}$ on $2^{\rm nd}$ conductor Voltage sensitivity w.r. to ${\rm G}_{\rm L1}$ on $2^{\rm nd}$ conductor x 10⁻³ 5 0.01 Sensitivity S_{CL2} Sensitivity S_{GL1} 0.005 0 0 -5 -0.005 -10 -0.01 6 0.2 0.2 4 2 2 x 10 x 10 0 0

Nodal voltage sensitivities *

28-Jul-11

Distance (m)

0 0

Time (s)

brancik@feec.vutbr.cz

Time (s)

Distance (m)

Example: General MTL system

28-Jul-11

CPU times evaluation

CPU times for PC 2GHz/2GB, sparse matrix notations

28-Jul-11

brancik@feec.vutbr.cz

Conclusion

- ✤ In case of linear MTLs, the method is stable and accurate enough,
- ✤ In case of nonlinear MTLs, further studies will be performed,
- Higher-order techniques will be investigated in future as well

Thank you for your kind attention !

brancik@feec.vutbr.cz xsevci34@stud.feec.vutbr.cz

Department of Radio Electronics, Brno University of Technology Purkyňova 118, 612 00 Brno, Czech Republic