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Transmission Model
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Transmission Model

x̃ = R · x + ne

xi ∈ Ax = {a1, a2, · · · , aM}

ai ∈ C, x̃ ∈ Cn

There are Mn possible x
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Vector Equalizer

Why a vector equalizer is needed?
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Vector Equalizer

Why a vector equalizer is needed?

x̃ = R · x + ne
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Vector Equalizer

Why a vector equalizer is needed?
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Vector Equalizer

Given x̃ and R what is the most likely transmitted vector?
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Vector Equalizer

Given x̃ and R what is the most likely transmitted vector?

Maximum Likelyhood Vector Equalizer

Optimal performance

High Complexity There are Mn possible x
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Vector Equalizer

Given x̃ and R what is the most likely transmitted vector?

Maximum Likelyhood Vector Equalizer

Optimal performance

High Complexity There are Mn possible x

Recurrent Neural Networks
Good Performance

Less Complexity
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Recurrent Neural Network

u (k + 1) = w · v (k) + w
0
· e

v (k) = ϕ
[

u (k)
]
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Recurrent Neural Network

u (k + 1) = w · v (k) + w
0
· e

v (k) = ϕ
[

u (k)
]

ui
(
ρ + 1

)
=

n∑

j=1

wij · vj
(
ρ
)
+ wi0 · ei

vi
(
ρ
)
= ϕ
[
ui
(
ρ
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Recurrent Neural Network

τ ·
u (t)

dt
= −u (t) + w · v (t) + w

0
· e

v (t) = ϕ
[

u (t)
]

M.Mostafa, W.G. Teich, J. Lindner · Stability Analysis of Recurrent Neural Networks with Time-Varying Activation Functions 13



Information Technology · Ulm University

Stability of the Recurrent Neural Network

Time-invariant activation function:

Weight matrix: D · w =
{

D · w
}T

wii ≥ 0

invertible activation function

The RNN is stable

Corresponding Lyapunov functions have been found
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Recurrent Neural Network as Vector
Equalizer

w
0
= R−1

diag

w = I − R−1

diag
· R

e = x̃

ϕ(.)?

D = R
diag
⇒ D · w = R

diag
− R⇒ D · w =

{

D · w
}T
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Optimal Activation Function

For real-valued modulation scheme: Ax = {a1, a2, · · · , aM}

ai ∈ R

M = 2p, p ∈N/{0}

v = ϕ(u) =

∑M
k=1 ak · exp

{
β · ak (2u − ak)

}

∑M
k=1 exp

{
β · ak (2u − ak)

}

0 < ϕ
′

(u) ≤ β⇒ ϕ(·) is invertible
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Optimal Activation Function

For real-valued modulation scheme: Ax = {a1, a2, · · · , aM}

ai ∈ R

M = 2p, p ∈N/{0}

v = ϕ(u) =

∑M
k=1 ak · exp

{
β · ak (2u − ak)

}

∑M
k=1 exp

{
β · ak (2u − ak)

}

0 < ϕ
′

(u) ≤ β⇒ ϕ(·) is invertible
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Example: Ax = {−3,−1, 1, 3}
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Slope’s Adaptation

Adapting the slope β:

1 Constant slope: By simulations
2 Time-dependent slope β(t):

Increasing slope: By simulations

Noise and Interference dependent slope β(t) ∝ 1
σ2(t)
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Slope’s Adaptation

Adapting the slope β:

1 Constant slope: By simulations
2 Time-dependent slope β(t):

Increasing slope: By simulations

Noise and Interference dependent slope β(t) ∝ 1
σ2(t)

Time dependent activation functions

The stability is not proven!!

M.Mostafa, W.G. Teich, J. Lindner · Stability Analysis of Recurrent Neural Networks with Time-Varying Activation Functions 19



Information Technology · Ulm University

Stability with Time varying Activation
Functions

Gβ(x) =

∫ x

0

ϕ−1
β (ψ) · dψ

Gβ(x2) − Gβ(x1) ≤ G
′

β(x2) · (x2 − x1)

Gβ1
(x) ≥ Gβ2(x)⇔ β2 > β1
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Stability with Time varying Activation
Functions

Take the Lyapunov function in case of time-invariant slope

E
[

v(t)
]

= −
1

2
· vT(t) ·

{

D · w
}

· v(t) − eT ·D · v(t) +

n∑

l=1

dll · Gβ [vl(t)]

Modify them to time-variant slopes

E
[

v(t)
]

= −
1

2
· vT(t) ·

{

D · w
}

· v(t) − eT ·D · v(t) +

n∑

l=1

dll ·Gβ(t) [vl(t)]
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Stability with Time varying Activation
Functions

Find conditions on the slope’s time variations, which keeps
the stability

E
[

v(t)
]

dt
=

n∑

l=1

∂E
[

v
]

∂vl
·

dvl(t)

dt

= −

n∑

l=1

τl · dll ·
dul(t)

dt
·

dvl(t)

dt

E
[

v(t)
]

dt
≤ 0⇒

dβ(t)

dt
≥ 0
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Conclusion

RNN as vector equalizer

Adapting the activation function during the time:
⇒ performance improvement
⇒ Better local minima

RNNs with time-variant activation function are locally stable:
⇒ The slope of the activation function must be
nondecreasing
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Thank you for the attention, Questions?

M.Mostafa, W.G. Teich, J. Lindner · Stability Analysis of Recurrent Neural Networks with Time-Varying Activation Functions 24


	Transmission Model
	Vector Equalizer
	Recurrent Neural Networks
	Stability with Time varying Activation Functions
	Conclusions

