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Transmission Model
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Transmission Model
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discrete-time channel vector equalizer
matrix on symbol basis
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Vector Equalizer

Why a vector equalizer is needed?
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Vector Equalizer

Why a vector equalizer is needed?
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discrete-time channel vector equalizer
matrix on symbol basis
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Vector Equalizer

Why a vector equalizer is needed?
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Vector Equalizer
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Given ¥ and R what is the most likely transmitted vector?
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Vector Equalizer
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vector equalization

Given ¥ and R what is the most likely transmitted vector?

@ Maximum Likelyhood Vector Equalizer

@ Optimal performance
@ High Complexity _
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Vector Equalizer
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vector equalization

Given ¥ and R what is the most likely transmitted vector?
@ Maximum Likelyhood Vector Equalizer
@ Optimal performance
@ High Complexity _
@ Recurrent Neural Networks
@ Good Performance

@ Less Complexity
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Recurrent Neural Network
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Recurrent Neural Network
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Recurrent Neural Network
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Time-invariant activation function:

T
@ Weight matrix: D -w = {DQ}
@ w; >0

@ invertible activation function

@ The RNN is stable
@ Corresponding Lyapunov functions have been found
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Recurrent Neural Network as Vector
Equalizer

/ vector equalization \
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Optimal Activation Function

For real-valued modulation scheme: @ A, ={ay,ap,--- ,apm}
@ g, €R
o M=2F, peIN/{0}

2211 a - exp {B - ax (2u — ax)}
2211 exp {B - ax Qu — ax)}

v=pu)=

0 < @ (u) < B = ¢() is invertible
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Optimal Activation Function

For real-valued modulation scheme: @ A, ={ay,ap,--- ,apm}
@ g, €R
o M=2F, peIN/{0}
Y M a-exp (B ap Qu — ay)}

O S N o B 2 )

0< ¢ (u) <p= ¢()isinvertible . i
Example: A, = {-3,-1,1,3} 2o
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Slope’s Adaptation

Adapting the slope f:

© Constant slope: By simulations
@ Time-dependent slope B(t):
@ Increasing slope: By simulations

@ Noise and Interference dependent slope B(t) o« UZL(t)
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Slope’s Adaptation

Adapting the slope f:

© Constant slope: By simulations
@ Time-dependent slope B(t):
@ Increasing slope: By simulations

@ Noise and Interference dependent slope B(t) o« U+®

Time dependent activation functions

The stability is not proven!!
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Stability with Time varying Activation

Functions
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Stability with Time varying Activation

Functions

@ Take the Lyapunov function in case of time-invariant slope

[v(t)]——— T (D) {_ _} o) ~¢" Do)+ Y dy- Gy [o(h)]
I=1

o Modify them to time-variant slopes

E[o)] = =3 -0"0 {2 v} 20— Do)+ Y di- Gy [r0)
I=1
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Stability with Time varying Activation

Functions

@ Find conditions on the slope’s time variations, which keeps
the stability
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Conclusion

@ RNN as vector equalizer

@ RNNSs with time-variant activation function are locally stable:
= The slope of the activation function must be
nondecreasing

@ Adapting the activation function during the time:
= performance improvement
= Better local minima
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Thank you for the attention, Questions?
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