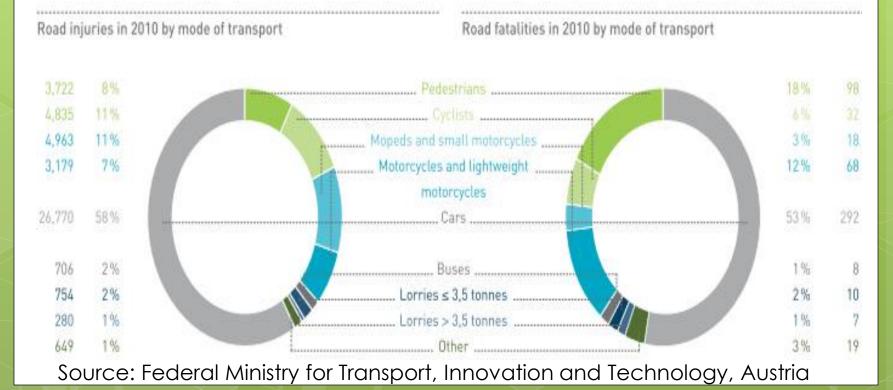


Non-intrusive Car Driver's Emotion Recognition Using Thermal Camera

Abhiram Kolli Alireza Fasih Fadi Al Machot Kyandoghere Kyamakya

Outline

- Motivation
- Background
- Limitations
- State of the art
 - Different approaches
 - Issues
- Proposed approach
 - Face Detection
 - Difference between thermal camera and visual ray camera (VRC) outputs
 - Disadvantages
 - Feature Extraction
 - Classification
- Results
- Conclusion and future work


Motivation

3

LPEN – ADRIA

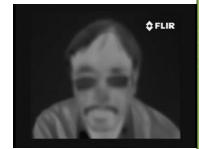
UNIVERSITÄT KLAGENFUR

- According to WHO
 - Approx. 1.3 million people die each year due to road accidents
 - 20-50 million sustain non-fatal injuries each year due to road accidents
- 1%-3% of GDP loss

Background

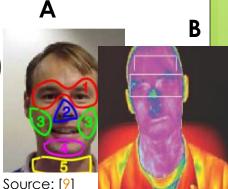
ALPEN – ADRIA

UNIVERSITÄI KLAGENFUR

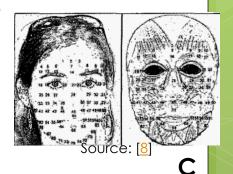

- Several papers are available for human emotions detection
 - Using VRC alone [4] [5]
 - Automatic Analysis of Facial Expressions: the State of the Art
 - M. Pantic, and L.J.M. Rothkrantz
 - Automatic Facial Expression Analysis: A Survey
 - B. Fasel, and J. Luettin
 - Using audio alone [3] [6]
 - A Comparison of Classifiers for Detecting Emotion from Speech
 - Shafran, I. and M. Mohri
 - Emotion recognition using novel speech signal features
 - T.S. Tabatabaei, S. Krishnan, and A. Guergachi
 - Fusion of VRC and audio [7]
 - Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information
 - C. Busso et al
 - Fusion of VRC, thermal camera and audio sensor [1]
 - Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face
 - Y. Yoshitomi, S. Kim, T. Kawano, T. Kitazoe
 - Using thermal camera alone [8]
 - Automated classification and recognition of facial expressions using infrared thermal imaging
 - Khan, Masood Mehmod, Ward, Robert D, Ingleby, Michael

Limitations

- Short comes of using Visible Ray Camera(VRC)[]
 - Poor/no visibility of the images at improper/varying illumination conditions(image A a)
 - Prone to shade, reflection, and local darkness influence the accuracy
 - Inability to clearly distinguish the fatigue and smiling faces (image b)
- Short comes of using Active-Infrared Camera[<u>2]</u>
 - Lack of standardisation
 - Temperature increase on human arm and forehead is 1.5 ± 0.5°C (p, 9)
 - Probability of human cell death increases when the cell temperatures are sustained above 41°C
- Short comes of using Audio Sensors[<u>3</u>][<u>6</u>]
 - Only accuracy of range 37.7% to 81.3% has been achieved
 - Requires separate database for each language



В



State of the art

- Approaches for face emotion detection (thermal camera)
 - Monitoring of face regions temperature
 - Work done on facial muscle due to transition from one emotional state to another(Figure A and B)
 - Work done leads to temperature variations
 - Using facial thermal feature points (FTFPs) (Figure C)

- Why a new project using only thermal camera?
 - The inability of the current system to use an integrated approach
 - Lack of integrated face detection technique
 - Lack of integrated post processing
 - Lack of optimization of project for car environment

Proposed approach

• Face detection

7

- Colour based
- Region growing based
- Morphological based
- Fusion of the above
- Feature extraction
 - o TIVS
 - o HOG
- Classification
 - Modified Hausdorff distance

Output for Thermal Images

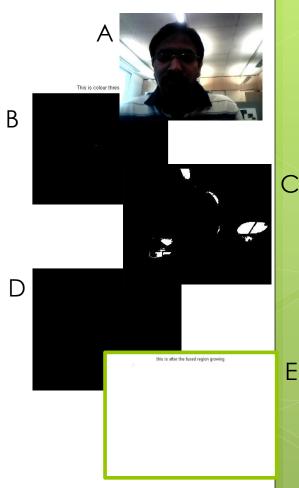
- Image (A,1) --- Output of colour based technique.
- Image (A,2) --- Output of morphological operations based technique
- Image (B,1) --- Output of region growing
- Image (B,2) --- Output of AND (above three images)
- Final face region in red bounding box and its orientation in green ellipse
- The cropped detected face from the original input image
- Histogram of the cropped image

ALPEN - ADRIA

UNIVERSITÄT KLAGENFUR 8

- Representation of several temperature regions with pseudo colours
- Command window displayed output:
 - Maximum value detected before region growing: 195
 - Maximum value detected before region growing: 1
 - Person is leaning towards his "left"

В


28/07/2011

28/07/2011

Output for VRC Images

- Image A --- Input colour image
- Image B --- Output of colour based detection technique
- Image C --- Output of region growing technique
- Image D --- Output of AND (above three images)
- Image E --- Output of fused image region growing
- Output displayed on the command window
 - Maximum value detected before region growing: 255
 - Maximum value detected before region growing: 0
 - ??? Too many outputs requested. Most likely cause is missing [] around left hand side that has a comma separated list expansion.
 - Error in ==> faceorient at 199
 - ee = Rp.Orientation;

Results

• Performance of face detection algorithms

Algorithm	Performance (%)			
	True Positives	False Positives		
Color based detection	55	45		
Region growing based detection	80	20		
Morphological operation based detection	70	30		
Fusion of resulting images	70	30		

• Performance of classifier

Emotion	Angry	Disgust	Fear	Нарру	Sad	Surprise
Angry	66.67	18.49	12.18	0.83	0.4	1.43
Disgust	2.94	69.81	6.07	0.85	19.50	0.83
Fear	13.66	29.90	48.37	0.71	1.91	5.75
Нарру	3.01	1.13	1.20	82.36	0.71	11.59
Sad	1.30	20.84	2.13	0.64	70.18	4.91
Surprise	1.65	6.51	3.18	22.60	2.65	63.41

28/07/2011

Conclusion and future work

• Proposed approach

11

- Lack of integrated face detection technique
- Lack of integrated post processing
- Lack of optimization of project for car environment
- Classifies more number of emotions compared to state of the art
- Improving the performance of the classifier
 - Increasing the number of samples of the database
 - Reducing the dimensionality of the mean image
- Fusion of sensors
 - Audio
 - VRC
 - Thermal camera

ALPEN – ADRIA

UNIVERSITÄT KLAGENFURT

References

- 1. Y. Yoshitomi, S. Kim, T. Kawano, T. Kitazoe, Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face, in: Proceedings of ROMAN, 2000, pp. 178-183
- 2. Bozkurt A, Onaral B: Safety assessment of near infrared light emitting diodes for diffuse optical measurements. BioMedical Engineering OnLine 2004, 3:9.
- 3. Shafran, I. and M. Mohri: 2005, 'A Comparison of Classifiers for Detecting Emotion from Speech'. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA: IEEE, pp. 341-344.
- 4. M. Pantic, and L.J.M. Rothkrantz, "Automatic Analysis of Facial Expressions: the State of the Art," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 12, pp. 1424-1445, Dec. 2000.
- 5. B. Fasel, and J. Luettin, "Automatic Facial Expression Analysis: A Survey," Pattern Recognition, 36(1):259-275, 2003.
- 6. T.S. Tabatabaei, S. Krishnan, and A. Guergachi. Emotion recognition using novel speech signal features. In International Symposium on Circuits and Systems, pages 345–348, 2007.
- 7. C. Busso et al., "Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information," Proc. Sixth ACM Int'l Conf. Multimodal Interfaces (ICMI '04), pp. 205-211, 2004.
- 8. Khan, Masood Mehmod, Ward, Robert D, Ingleby, Michael, "Automated classification and recognition offacial expressions using infrared thermal imaging," 2004 IEEE Conference on Cybernetics and Intelligent Systems, 2004, p 202-206.
- 9. I. Pavlidis, J. Levine, P. Baukol, Thermal imaging for anxiety detection, in: IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications, 2000, pp. 104–109.
- 10. Liangbin Zhang, Lifeng Xi, Hybrid Image Compression Using Fractal-Wavelet Prediction, in: Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, November 20-22, 2006.

Non-intrusive Car Driver's Emotion Recognition

Questions