July 25-27, 2011

Image Edge Detection with Discretely Spaced FitzHugh-Nagumo Type Excitable Elements

A. Nomura

M. Ichikawa, K. Okada, H. Miike, T. Sakurai & Y. Mizukami

Yamaguchi University & Chiba University

Japan

Outline

- Introduction & Background
 - Reaction-diffusion, coupled oscillators & pattern formation
 - Edge detection algorithms
- Motivation
- Edge Detection Algorithms
 - Our previous algorithm utilising coupled excitable elements
 - Proposed algorithm based on the previous algorithm
- Experimental Results
- Conclusion

Introduction & Background: Reaction-Diffusion, Coupled Oscillators & Pattern Formation

- Reaction-Diffusion System
 activator and inhibitor
- Weak Inhibition
 - Chemical reaction
 - Belousov-Zhabotinsky (BZ) reaction
 - Biological system
 - signal propagation in Dictyostelium discoideum
- Strong Inhibition
 - Turing pattern

Keener & Tyson, Physica D, 1986

Höfer et al., Physica D, 1995

Movie

Introduction & Background:

Previous Research Topics on Pattern Formation

	Weak Inhibition	Strong Inhibition
Experimental Study	Belousov-Zhabotinsky (BZ) Reaction - Zaikin & Zhabotinsky, <i>Nature</i> , 1970 Light-Sensitive BZ Reaction - Busse & Hess, <i>Nature</i> , 1973 - Jinguji et al., <i>Physica D</i> , 1995	Mach Bands in Limulus Eyes - Hartline et al., J. Gen. Physiol., 1956 Chemical Reaction - Castets et al., Phys. Rev. Lett., 1990 Pattern Formation on Fish Skin - Kondo & Asai, Nature, 1995
Modelling Study	FitzHugh-Nagumo (FHN) Model - FitzHugh, <i>Biophysical J.</i> , 1961 - Nagumo et al., <i>Proc. IRE</i> , 1962 Reaction-Diffusion + Oregonator (BZ) - Keener & Tyson: <i>Physica D</i> , 1986	Pattern Formation in Hydra - Turing, Proc. Roy. Soc. Lond., 1952 - Gierer & Meinhardt, Kybernetik, 1972 Model for Mach Bands - Barlow & Quarles, J. Gen. Physiol., 1975
Image Processing (IP) & Computer Vision	Light-Sensitive BZ reaction - Kuhnert et al.: <i>Nature</i> , 1986, 1989 Autowave Principles - Krinsky et al., <i>Physica D</i> , 1991	Edge Detection & Segmentation - Nomura et al., J. Phys. Soc. Jpn., 2003 - Kurata et al., Phys. Rev. E, 2009 Stereo Disparity Detection - Nomura et al., Mach. Vis. Appl., 2009
Cellular Neural Network (CNN)	Autowaves for IP with Chua's Circuit - Perez-Munuzuri et al., <i>IEEE CS</i> , 1993	 Turing Pattern with Chua's Circuit Goras & Chua, IEEE CS, 1995 Segmentation with FHN + LEGION* Wang & Terman, IEEE NN, 1995

*LEGION: Locally Excitatory Globally Inhibitory Oscillator Network

Introduction & Background:

Edge Detection Algorithms & Related Topics

Algorithms / Topics	Articles
Gaussian filter (LoG or DoG filter)	Marr and Hildreth: Proc. Roy. Soc. Lond., 1980
Diffusion equation	Koenderink: <i>Biological Cybernetics,</i> 1984 Sunayama et al.: <i>Jpn. J. Appl. Phys.,</i> 2000
Anisotropic diffusion	Perona and Malik: <i>IEEE PAMI</i> , 1990 Nordstrom: <i>Image & Vis. Comp.</i> , 1990 Black et al.: <i>IEEE IP</i> , 1998
Edge detection & blur estimation	Elder and Zucker: IEEE PAMI, 1998
Evaluation methods & others	Heath et al.: <i>IEEE PAMI</i> , 1997 Martin et al.: <i>IEEE PAMI</i> , 2004, 2011 F-measure, Precision-Recall, contour detection
Review	Ziou and Tabbone, <i>Patt. Recog. Image Anal.</i> , 1998 Basu, <i>IEEE SMC-C</i> , 2002

Motivation

- Image processing with
 - reaction-diffusion systems
 - coupled excitable elements
- Inspired by
 - Long-range inhibition in visual systems
 - DoG filter
 - Mach bands effect
 - Stationary patterns in biological systems

The FitzHugh-Nagumo Type Excitable Element

Previous algorithm:

Spatially Coupled Uni-stable Excitable Elements

- Uni-stable elements placed at image grids
 - Nomura et al., J. Phys. Soc. Jpn., 2003
 - Kurata et al., Phys. Rev. E, 2009

$$\frac{\mathrm{d}u_{i,j}}{\mathrm{d}t} = C_u \left[\overline{u_{i,j}} - 4u_{i,j} \right] + \frac{1}{\varepsilon} \left[u_{i,j} (u_{i,j} - a)(1 - u_{i,j}) - v_{i,j} \right]$$

$$\frac{\mathrm{d}v_{i,j}}{\mathrm{d}t} = C_v \left[\underbrace{v_{i,j}}_{\text{Spatial coupling}} - 4v_{i,j} \right] + u_{i,j} - bv_{i,j}$$

 $\overline{u_{i,i}}$, $\overline{u_{i,i}}$: averages in the nearest four points.

• Strong inhibition: $C_u << C_v$

 \Rightarrow Stationary pulses at edge positions

• Weak inhibition: $C_u << C_v$ \Rightarrow Propagating pulses

Previous algorithm:

Examples for a Real Image

- Initial states:
 - $u_{i,j}(0)$ ="image intensity distribution" and $v_{i,j}(0)$ =0.0
- Pulses are self-organised at edges.
 - $C_u << C_v$: pulses are stationary at the edges.
 - $C_u > C_v$: pulses propagates and develop as spiral waves.

Real image (512×512 pixels) Initial state of $u_{i,j}$ (t=0).

 $u_{i,j}(t=10)$ with $C_v=0.0$

Courtesy of Heath et al.: "Edge detector comparison", <u>http://marathon.csee.usf.edu/edge/edge_detection.html</u> Other parameter settings: C_u =4.0, *a*=0.05, *b*=1.0, ε=1.0×10⁻², δ*t*=1/10000 Our previous algorithm:

Edge Detection for Grey Level Image

• Two pairs of coupled elements

The 1st
$$\begin{cases} \frac{du_{i,j}^{0}}{dt} = C_{u} \left[\overline{u_{i,j}^{0}} - 4u_{i,j}^{0} \right] + \frac{1}{\varepsilon} \left[u_{i,j}^{0} (u_{i,j}^{0} - a_{i,j}^{0})(1 - u_{i,j}^{0}) - v_{i,j}^{0} \right] + \frac{du_{i,j}^{1}}{dt} \Theta(-\frac{du_{i,j}^{1}}{dt}) \\ \frac{dv_{i,j}^{0}}{dt} = C_{v} \left[\overline{v_{i,j}^{0}} - 4v_{i,j}^{0} \right] + u_{i,j}^{0} - bv_{i,j}^{0} \\ \end{cases}$$
The 2nd
$$\begin{cases} \frac{du_{i,j}^{1}}{dt} = C_{u} \left[\overline{u_{i,j}^{1}} - 4u_{i,j}^{1} \right] + \frac{1}{\varepsilon} \left[u_{i,j}^{1} (u_{i,j}^{1} - a_{i,j}^{1})(1 - u_{i,j}^{1}) - v_{i,j}^{1} \right] \\ \frac{dv_{i,j}^{1}}{dt} = C_{v} \left[\overline{v_{i,j}^{1}} - 4v_{i,j}^{1} \right] + u_{i,j}^{1} - bv_{i,j}^{1} \\ \end{cases}$$
Weak point:

• Edge map $M(t) = \{(i, j) | u_{i, i}^{0} > \theta\}$ Edges of narrow dark areas are not detected.

Nomura et al., International Journal of Circuits, Systems and Signal Processing, 2011

Proposed Edge Detection Algorithm

- For detecting edges of narrow dark areas,
- Utilise an original image I_{i,j} and its intensity inverted version ¬I_{i,j}.
- Apply our previous edge detection algorithm to both of the images I_{i,i} and ¬I_{i,i}.
- Obtain two edge maps $M_{l}(t)$ and $M_{\neg_{l}}(t)$.
- Compute a final edge map.

 $M(t)=M_{I}(t) \cup M_{\neg}(t)$

Performance Evaluation of Edge Detection Algorithms

- Tested algorithms:
 - Our previous Algorithm:
 - Nomura et al., International Journal of Circuits, Systems and Signal Processing, 2011
 - Proposed algorithm
 - Canny Algorithm: Canny, IEEE PAMI, 1986
 - Anisotropic Diffusion Algorithm: Black et al., *IEEE IP*, 1998

For program codes of the Canny algorithm and the anisotropic diffusion algorithm, courtesy of Heath et al., http://marathon.csee.usf.edu/edge/edgecompare main.html

- $P = \frac{1}{|M_t|} |M_t \cap M_o| \qquad F = \frac{2PR}{P+R}$ Accuracy measures: - P: Precision $R = \frac{1}{|M_{o}|} |M_{t} \cap M_{o}| \qquad \begin{bmatrix} M_{o}: \text{ obtained edge map} \\ M_{t}: \text{ true edge map} \end{bmatrix}$
 - R: Recall
 - F-measure

Martin et al.: IEEE PAMI, 2004, 2011

Experimental results:

Results of Performance Evaluation for Noiseless Image

Experimental results: Results of Performance Evaluation for Noisy Image

Experimental results: Results for Real Images

Real Image

Proposed Algorithm

Canny Algorithm

Anisotropic Diffusion Algorithm

Experimental results: Convergence of the Proposed Algorithm

Conclusion

- Edge detection algorithm for grey level image
 - FitzHugh-Nagumo excitable elements
 - Discretely spaced elements
 - Original image and its inverted version
- Experimental results
 - Artificial and real images
 - Comparison with the Canny algorithm and the anisotropic diffusion algorithm
 - Convergence

Thank you for your attention!

Any Question ?

Acknowledgment:

The present study was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 23500278) from the Japan Society for the Promotion of Science.